THE HYPOCHOLESTEREMIC EFFECT OF 3β-(β-DIMETHYLAMINOETHOXY)-ANDROST-5-EN-17-ONE AND ITS MECHANISM OF ACTION

Samuel Gordon, Edward W. Cantrall, Walter P. Cekleniak, Henry J. Albers, Ruddy Littell, and Seymour Bernstein

Biochemical Research and Organic Chemical Research Sections, Lederle Laboratories, Division of American Cyanamid Company, Pearl River, New York

Received November 21, 1961

The great interest in compounds which lower blood cholesterol has prompted us to report on a new steroid which is a potent hypocholesteremic agent and appears to inhibit cholesterol biosynthesis by inhibiting the conversion of desmosterol to cholesterol.

Preparation

 3β -(β -Dimethylaminoethoxy)-androst-5-en-17-one [m. p. 123-24°, [a] $_D^{25}$ + 6.6°(CHCl₃); hydrochloride m. p. 235-37°, [a] $_D^{25}$ + 22° (CH₃OH)] was prepared by the alkylation of 17-ethylenedioxyandrost-5-en-3 β -ol with β -dimethylaminoethylchloride and potassium \underline{t} -butoxide in tetrahydrofuran solution. Both the free amine and its hydrochloride salt gave satisfactory elemental microanalyses.

Dose Response and Postmortem Studies

Male rats, C. F. E. strain, 125 g initial weight, obtained from Carworth Farms, New City, New York were divided into groups of 6 and fed the compound incorporated in the diet. After one and two weeks, tail blood samples were removed for serum sterol determination. At the end of 4 weeks, the animals were decapitated and various tissues examined.

The serum sterol concentration was markedly reduced after one week at a dietary dose level of 0.001% (Table I).

		No. of	Serum Sterol ^a		
Dose		Animals	l week	2 weeks	4 weeks
% in diet	mg/kg		mg %	mg %	mg %
Control	0	6	87 ± 2.9b	73 [±] 3.3	72 ± 2.6
0.0005	. 75	6	79 ± 3.7°	58 ± 3.3	56 [±] 3.4
.001	1.5	6	66 [±] 2.7	61 ± 2.9	45 [±] 2.7
.003	4.5	6	63 [±] 4.3	45 ± 2.4	32 ± 2.7
.01	15	6	54 [±] 4.2	46 [±] 4.3	24 [‡] 2.4
. 03	45	6	56 ± 2.7	53 [±] 4.8	26 [±] 3.7

^aSaponification and extraction by method of Trinder (1952) followed by colorimetric analysis using FeCl₃-H₂SO₄. (Zlatkis et al. 1953)

The results of the postmortem studies are summarized in Table II.

The values are the average of 6 determinations within each group. A level of 0.03% in the diet resulted in reduction of food intake and growth. Some adrenal and liver enlargement and liver lipid infiltration were observed.

Marked adrenal sterol depletion occurred at all levels. Since sterols serve as precursors for adrenal corticoids, depletion of these sterols may account for adrenal enlargement. This would be analogous to thyroid hypertrophy during iodine depletion.

In an androgen assay (rat, 4 days, subcutaneous route, ventral prostate weights) this compound was inactive at dose levels up to 2.5

bMean + Standard Error

^cThis is the only group which is not significantly different from the control by Rank Test; P>.05 (Wilcoxon 1945)

The assays were carried out by the Department of Metabolic Chemotherapy, Experimental Therapeutics Research Section of these Laboratories.

. 03

Liver Sterol mg/g. a Final Body wt. g/rat Food Intake Ĭ $\mathbf{Fat}^{\mathbf{b}}$ Ĭ g/rat/day Adrenala Sterol Liver wt. Body wt. M. Adrenal Body wt. Adrenal Liver. Liver mg/g. 90 Dose % in Diet 29.7 12.8 0.045 2, 2 67.7 21 285 39.5 0.139 Control 15.0 1.7* 71.6 0.0005 21 290 39.2 . 134 18.8* .052* 20 44.8 .159 13.0* 14.3 .051* 2.0 68.2 .001 282 1.5* 74.4 .003 21 287 43.2 .150 7.6* 15.9* .055* 6.4* 18.4* .062* 1.4* 81.2* 21 297 47.5* .159* .01

Table II

Effects of Various Levels of the Compound Given Orally for 4 Weeks

.188*

12.4*

14.4

.078*

1.8*

82.4*

188*

35.4

14*

mg/day, whereas dehydroisoandrosterone displayed a perceptible response at a 1 mg level.

Mechanism of Action

At the end of the 4 week feeding period, animals in the control and 0.01% treated groups were injected intraperitoneally with 1-C¹⁴ labeled acetate. Four hours later they were sacrificed. The livers were removed, saponified and the sterol fraction recovered as a petroleum ether (b.p. 30-60°) extract. A sample of liver sterol from each animal was subjected to gas liquid chromatography. The effluent fractions were trapped in tubes packed with glass wool and rinsed into counting vials with toluene phosphor. The vials were counted in a Packard 'Tri-Carb' liquid scintillation counter.

^aDetermined on an aliquot of ethanol-ether extract by method used for serum.

bMethod of Shipley et al. (1948).

^{*}Significantly different from controls by Rank Test. P(.05 (Wilcoxon 1945).

In contrast to the control livers which yielded only cholesterol, most of the sterol in the livers of the treated animals was desmosterol (Table III). Most of the C¹⁴ activity was in this fraction. This suggests that the administration of this compound inhibits the conversion of desmosterol to cholesterol. The gas chromatographic pattern of the liver sterols from the compound treated animals is essentially the same as that obtained from triparanol treated animals. Thus it would appear that this compound lowers tissue cholesterol by inhibiting the biosynthesis of cholesterol at the desmosterol stage as has been reported with triparanol (Avigan et al. 1960).

Table III Sterol Content and C^{14} Activity of Rat Livers As Determined By Gas-Liquid Chromatography a

Treatment	Sterol b	% of total Sterols	% of total C ¹⁴ in Sterols
Controls	Cholesterol Desmosterol Zymosterol Lanosterol	100	89.3 0 0 10.7
3β-(β-Dimethyl aminoethoxy)- androst-5-en- 17-one	Cholesterol Desmosterol Zymosterol Lanosterol	1.5 98.5 - trace	7.5 76.6 12.1 3.7
Triparanol ^c	Cholesterol Desmosterol Zymosterol Lanosterol	27.5 72.5 trace trace	7.0 74.5 9.6 8.8

^aBarber Colman Model 10, 3% SE-30 on Gas Chrom P, 100-140 mesh 6' x 1/4" ID, column temperature 240°, cell temperature 255°, Argon gas flow 105 ml/min. at 30 p.s.i.

bIdentity of these sterols established by comparison with authentic samples.

Indicates non-detectable quantities; trace, indicates less than 0.5% of total sterol.

^C1-**/**4-(diethylaminoethoxy) phenyl**7**-1-(p-tolyl)-2-(p-chlorophenyl) ethanol.

References

- Avigan, J., Steinberg, D., Thompson, M. J., and Mosettig, E., Suppl. to Prog. Cardiov. Dis. 2, 525 (1960).
 Shipley, R. A., Chudzik, E. B., and György, P., Arch. Biochem. Biophys. 16, 301 (1948).
 Trinder, P., Analyst 77, 321 (1952).
 Wilcoxon, F., Biometrics Bull. 1, 80 (1945).
 Zlatkis, A., Zak, B., and Boyle, A. J., J. Lab. Clin. Med. 41, 486 (1953).

- (1953).